
LA GUITARE ÉLECTRIQUE

La guitare électrique a été créée dans les années 1920 aux États-Unis.

Elle produit des sons grâce à des micros qui captent et transforment les vibrations des cordes en signaux électriques.

Micros

Source image: http://genresmusicaux.weebly.com/la-guitare-eacutelectrique.html

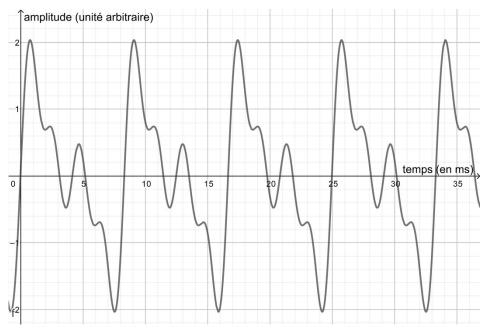
Document 1 : Fréquence des sons produits par les cordes à vide de la guitare électrique La guitare électrique est composée de six cordes métalliques. Une corde est dite « à vide » lorsqu'elle vibre sur toute sa longueur.

Les fréquences des notes produites par les cordes à vide d'une guitare bien accordée sont données dans le tableau suivant :

n° de la corde	1	2	3	4	5	6
note (le chiffre en indice indique le numéro de l'octave)	mi₁	la₁	ré₂	SOl ₂	Sİ ₂	mi₃
fréquence (en Hz)	82,4	110,0		196,0	246,9	

- **1 -** Rappeler la relation liant les fréquences de deux notes séparées par une octave. En déduire la fréquence du son émis par la corde n°6 jouée à vide.
- **2-** La gamme tempérée, représentée ci-dessous, est construite en divisant l'octave en douze intervalles égaux (au sens où les rapports entre deux fréquences successives sont égaux), appelés demi-tons.

Parmi les algorithmes ci-dessous, indiquer celui qui permet de calculer la fréquence du Ré₂ à partir du Sol₂.


Calculer cette fréquence.

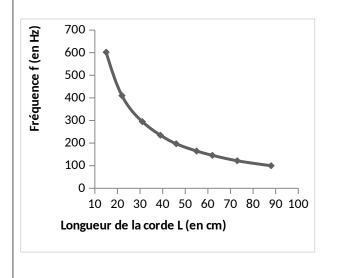
Algorithme 1	Algorithme 2	Algorithme 3	Algorithme 4
<i>f</i> ← 196	<i>f</i> ← 196	<i>f</i> ← 196	<i>f</i> ← 196
Pour i allant de 1 à 5 :	Pour i allant de 1 à 5 :	Pour i allant de 1 à 6 :	Pour i allant de 1 à 6 :
$f \leftarrow f \div 2^{\frac{1}{12}}$	$f \leftarrow f \times 2^{\frac{1}{12}}$	$f \leftarrow f \div 2^{\frac{1}{12}}$	$f \leftarrow f \times 2^{\frac{1}{12}}$
Fin Pour	Fin Pour	Fin Pour	Fin Pour

3 - Comme tous les instruments de musique, une guitare électrique doit être accordée. Il faut pour cela vérifier que les fréquences des sons émis par les cordes à vide sont égales à celles du document 1.

Un système d'acquisition a permis d'enregistrer et de visualiser le signal correspondant au son émis par la corde n°2 d'une guitare électrique jouée à vide.

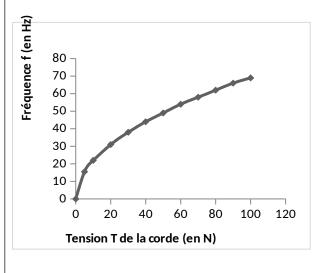
Document 2 : Signal correspondant au son émis par la corde n°2 jouée à vide

Source: Auteur


Indiquer si la corde n°2 de la guitare électrique est accordée. Justifier la réponse.

4- La fréquence du son émis par une corde mise en vibration dépend de plusieurs paramètres dont la longueur L et la force de tension T de la corde.

Document 3 : Étude de l'influence de différents paramètres sur la fréquence du son émis par une corde


Expérience 1 :

On fait varier la longueur L de la corde et on mesure la fréquence f du son émis (la force de tension T de la corde est maintenue constante).

Expérience 2 :

On fait varier la force de tension T de la corde et on mesure la fréquence f du son émis (la longueur L de la corde est maintenue constante).

- **4-a-** Indiquer comment varie la fréquence de la corde en fonction de la longueur.
- **4-b-** Indiguer comment varie la fréquence de la corde en fonction de la tension.
- **4-c-** On propose ci-dessous quatre relations entre la fréquence f du son produit par une corde et les paramètres qui l'influencent. k est une constante qui dépend de la corde.

Relation A : $f = k \times \frac{1}{L} \times \sqrt{T}$ Relation B : $f = k \times \frac{1}{L} \times T$;

Relation C : $f = k \times L \times \sqrt{T}$

Relation D: $f = k \sqrt{T \times L}$.

Choisir et recopier sur la copie la relation qui convient.

4-d- Un guitariste souhaite accorder sa guitare. Pour cela, il peut agir sur les différentes clés pour augmenter ou diminuer la tension des cordes. Avant accord, le son émis par la corde n°4 à vide est de 192,0 Hz.

Indiquer comment il doit agir pour accorder la corde n°4 de sa guitare.